Win Prediction in Esports: Mixed-Rank Match Prediction in Multi-player Online Battle Arena Games

نویسندگان

  • Victoria J. Hodge
  • Sam Devlin
  • Nick Sephton
  • Florian Block
  • Anders Drachen
  • Peter I. Cowling
چکیده

Esports has emerged as a popular genre for players as well as spectators, supporting a global entertainment industry. Esports analytics has evolved to address the requirement for data-driven feedback, and is focused on cyber-athlete evaluation, strategy and prediction. Towards the latter, previous work has used match data from a variety of player ranks from hobbyist to professional players. However, professional players have been shown to behave differently than lower ranked players. Given the comparatively limited supply of professional data, a key question is thus whether mixed-rank match datasets can be used to create data-driven models which predict winners in professional matches and provide a simple in-game statistic for viewers and broadcasters. Here we show that, although there is a slightly reduced accuracy, mixed-rank datasets can be used to predict the outcome of professional matches, with suitably optimized configurations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Esports Analytics Through Encounter Detection

Esports is computer games played in a competitive environment, and analytics in this domain is focused on player and team behavior. Multiplayer Online Battle Arena (MOBA) games are among the most played digital games in the world. In these games, teams of players fight against each other in enclosed arena environments, with a complex gameplay focused on tactical combat. Here we present a techni...

متن کامل

Modeling Game Avatar Synergy and Opposition through Embedding in Multiplayer Online Battle Arena Games

Multiplayer Online Battle Arena (MOBA) games have received increasing worldwide popularity recently. In such games, players compete in teams against each other by controlling selected game avatars, each of which is designed with different strengths and weaknesses. Intuitively, putting together game avatars that complement each other (synergy) and suppress those of opponents (opposition) would r...

متن کامل

Player Skill Decomposition in Multiplayer Online Battle Arenas

Successful analysis of player skills in video games has important impacts on the process of enhancing player experience without undermining their continuous skill development. Moreover, player skill analysis becomes more intriguing in team-based video games because such form of study can help discover useful factors in effective team formation. In this paper, we consider the problem of skill de...

متن کامل

Sports Result Prediction Based on Machine Learning and Computational Intelligence Approaches: A Survey

In the current world, sports produce considerable statistical information about each player, team, games, and seasons. Traditional sports science believed science to be owned by experts, coaches, team managers, and analyzers. However, sports organizations have recently realized the abundant science available in their data and sought to take advantage of that science through the use of data mini...

متن کامل

Dynamic behavior and player types in majoritarian multi-battle contests

In a dynamic contest where it is costly to compete, a player who is behind must decide whether to surrender or to keep fighting in the face of bleak odds. We experimentally examine the game theoretic prediction of last stand behavior in a multi-battle contest with a winning prize and losing penalty, as well as the contrasting prediction of surrendering in the corresponding contest with no penal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06498  شماره 

صفحات  -

تاریخ انتشار 2017